
APPLICABILITY OF THE CONTINUUM-SHELL THEORIES

TO THE MECHANICS OF CARBON NANOTUBES'

V. M. Harik*, T. S. Gates* and M. P. Nemeth'

NASA Langley Research Center

Hampton, Virginia 23681-2199

AIAA-2002-1429

Abstract

Validity of the assumptions relating the

applicability of continuum shell theories to the global
mechanical behavior of carbon nanotubes is examined.

The present study focuses on providing a basis that can

be used to qualitatively assess the appropriateness of
continuum-shell models for nanotubes. To address the

effect of nanotube structure on their deformation, all

nanotube geometries are divided into four major classes

that require distinct models. Criteria for the

applicability of continuum models are presented. The

key parameters that control the buckling strains and

deformation modes of these classes of nanotubes are

determined. In an analogy with continuum mechanics,

mechanical laws of geometric similitude are presented.

A parametric map is constructed for a variety of

nanotube geometries as a guide for the applicability of

different models. The continuum assumptions made in

representing a nanotube as a homogeneous thin shell

are analyzed to identify possible limitations of applying

shell theories and using their bifurcation-buckling

equations at the nano-scale.

Introduction

Single-walled carbon nanotubes (NTs) are hollow

cylindrical, shell-like macromolecules that are

composed of carbon atoms arranged in periodic

hexagonal cells [ll. Recent studies [1-6] indicate that

these structures have great promise for providing

superior mechanical properties such as stiffness

approaching 1.5 TPa and strength approaching 100

GPa, with a density of about 1.3 g/cm _. However,

because of their nanometer size, direct measurement of

these NT properties has been found to be extremely
difficuh.
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A review of the recent literature shows that, to date,

mechanical deformations of NTs have been examined

via experimental characterization [1], while predicted

properties have been determined by using ab initio (i.e.,

atomistic [2, 4]) methods or molecular dynamics (MD)

simulations [3, 6]. To utilize both measured and

calculated properties in the design of nanometer scale

sensors and material systems with sub-micron

inclusions, a full in-depth understanding of mechanical

behavior of carbon NTs is required.

Representing new nanostructured materials with

equivalent-continuum models also appears to be a

viable approach to developing a means to describe their

mechanical behavior. However. the applicability _I any
continuum model should be well defined. Toward thai

purpose, this study addresses the question: "'Can
continuum-mechanics models of NT behavior be used

to determine their global response and, if so. what are

the limitations?" This question arises naturally from the

fact that NTs are cylindrical, lattice-like molecular

structures and equivalent-continuum models [3, 7, 8-101

have been used recently to estimate global properties,

such as shell stiffness [3, 71 and an equivalent thickness

of the graphene lattice [10]. Meanwhile, it has also

been demonstrated that representing a NT as a

continuum shell implicitly imposes certain restrictions

on the structural features of NTs. The assumption of a

continuum cross-sectional area imposes certain

structural and size limitations on nanostructures [5, 8],

while the concept of shell stiffness may have to be re-

defined as an intrinsic material constant without the use

of NT thickness [7] when a classical shell model is
used.

The global mechanical behavior of the carbon

lattice can be also analyzed by representing the discrete

molecular structure with an equivalent truss model and

then as a homogeneous equivalent-continuum [101.

This representation is accomplished by exploiting the

periodicity of the graphene sheet and establishing a

correspondence between local quantities, such as the

bond strength, with global properties, such as elastic

energy. This approach is based on equating the energies

of the two corresponding systems. This method has

been applied successfully to structural mechanics

problems in the past, where vibration and buckling

modes of reticulated, large-area space structures have
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beenmodeledwithclassicalandhigher-orderplate
theories[11]. In somecases,localdetailswere
incorporatedintohigh-orderglobalstructuraltheories
throughtheuseof micropolar-continuummodels[12].
However,themeaningfulnessofallofthesecontinuum
modelsdependsonseveralbasicassumptionsaboutthe
relativewavelengthsof the global structural
deformationsas comparedto the characteristic

dimensions of local structural features. In the context

of NTs, the equivalence of the total energy of a

molecular lattice with the elastic strain energy of an

equivalent reticulated structure and with that of a

continuum plate [10] or shell, and similarities in their

kinematics appear to be the key issues.

To obtain meaningful values for the global

mechanical properties of NTs, whose calculated values

are based upon a structural theory, the applicability of

the continuum model upon which the structural theory
is based must be well defined at the nanometer scale

and well understood. Toward that goal, one objective

of the present study is to examine issues that typically

arise in continuum modeling of discrete systems and

continuum representation of NTs. Particular emphasis

is placed on interpreting the limitations that are

imposed on the continuum model by the underlying

assumptions. Other objectives are to identify

fundamental parameters that can be used to

qualitatively identify limitations of continuum models

and to provide a means for classifying nanotubes.

Continuum shell theories are of primary interest in

the present study, and, thus, specific comments about

the limitations of using shell buckling as a means for

deducing mechanical properties are presented.

Motivation for accomplishing these objectives stems, to

a large extent, from mechanical problems associated

with the deformation of NT-based sensors and scanning

probes (e.g., atomic force microscope tips [13, 14]) that
are used for material characterization. These

mechanical problems and related issues include: 1) the

ability of a given continuum model to describe

adequately the deformation of molecular lattice-type

structures, 2) how a NT is supported and how the load

is introduced, 3) the effects of structural imperfections

and deviations in cylindrical geometry, and 4) the

accuracy of recorded measurements. For example, the

introduction of mechanical loads into a NT-based probe

may be affected significantly by the local graphene

structure of the NT.

To accomplish the objectives of the present study,

the structure and geometry of NTs are described first.

Then, several issues about continuum modeling of NTs

are presented and examined in detail. Next, four major

classes of NTs that can be analyzed with equivalent-

continuum models, under certain restrictions on the size

of a NT and its strains, are identified. These classes

include thin and thick NT shells, long NTs and NT

beams. The key parameters that fully characterize the

global behavior of NTs and scaling laws for NT

buckling are derived via the scaling analysis of NT

deformation and its structure. A parametric map for the

four classes of nanotubes is constructed that can be

used to link NT behavior to specific equivalent-

continuum models, that can be used for data reduction

in characterization [13, 14] and MD simulations [3].

Lastly, limitations of using a shell representation fo,-
NTs and classical shell theories to characterize NT

global behavior are discussed and pitfalls are identified.

Nanotube structure

A carbon NT is composed of a cylindrical lattice-

like sheet of carbon atoms. In the carbon sheet {Fig. 1 _.

the adjacent carbon atoms are separated by the distance

of about 0.14 nm, which is the length of the carbon-

carbon/C-C bond, / . A NT consists of many

hexagonal carbon ra.ngs that have a width, a. of aboul

0.246 nm [1]. These carbon rings are the structural

cells in a NT. Different orientation ot" the carbon rings

or cells determine their chirality and result in distinct

NT structures (e.g., the "arm-chair" or "zig-zag" NTs).

Current processing technologies produce nanotubes

with wide variations in length, 1 nm < L_< 10 [tm, and

radius, 0.2 nm < R_; < 10 nm. Since the ring width, a, is

one of the smallest periodic elements in the NT lattice,
it can be identified as the characteristic dimension

associated with the local structure of a NT.

°.,.-,°'.,.% °°.°,-°..°..°

f .... _
.......... ring

..,' '"....width

°°°°,° .,.°,°'

atoms '-....... /'. ....... .-" length

Fig. 1. Schematic of a carbon lattice sheet composed of

carbon atoms in a periodic hexagonal arrangement.

Continuum modeling at nanomeler scale

To address the shell-like deformation of NTs, the
nanometer-scale structural features have to be properly
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accounted for in an equivalent-continuum model. In

this section, some aspects of a shell-like representation

of NTs are discussed to illustrate the origin and length-

scale limitations of continuum mechanics assumptions.

A careful description of familiar concepts is needed

when they are applied at the nanometer-scale level.

In continuum mechanics, the material particles that

comprise a deforming shell are contained within top

and bottom bounding surfaces and edge faces. The

middle surface of the shell is often used as the reference

surface and all of the surfaces are assumed to be

smooth. This simplified representation is motivated by

the fact that a fully three-dimensional representation of

the material body is not amenable to simplified

solutions that are needed for practical engineering

analysis and design studies. This two-dimensional,

simplified representation of the material body is based

upon the fact that two of its characteristic length

dimensions are substantially larger than its through-the-

thickness dimension. Moreover, the characteristic

through-the-thickness dimension is presumed to be

substantially larger than the characteristic dimension of

the local structural details such as the C-C bond length,

I, ,. For NTs, the thickness-to-bond-length ratio, hv/I c.

is not a large number, which points out the
(,

importance of molecular structure for NT behavior.
The NT shell-reference surface is a mathematical

surface that connects all of the carbon atoms and

provides a basic equivalent-continuum representation of

a NT-shell without specifying the value of NT

thickness, h_,I. It is difficult to define accurately the
thickness of a NT due to the discrete nature of NT

structure and, thus, the effective NT thickness, h_r_, can

only bc estimated by using various assumptions 13, 7, 8,

10]. This point is important because NT thickness is a

key geometric parameter that is needed to characterize

the range of NT structures that can be analyzed with

different continuum shell theories. Even in the simplest

continuum models, the global bending stiffness of a

shell is proportional to the cube of the shell thickness.

In addition, the thickness-to-radius ratio is known to be

important in the formulation of shell theories [15, 16].

Nanometer-scale effects may introduce corrections

to NT geometry such as: 1) variations in the estimates

of the effective thickness of NTs, which influence the

value of the thickness-to-radius ratio h_./R._.p 2) the NT

radius, RN_, is uniquely defined only when the
aforementioned reference shell-surface is used, and 3)

the value of NT length, LN_, is subject to the end-cap

effects that have the length-scale on the order of NT

radius or a/2 for the NTs with open ends (Fig 2). These

ambiguities in NT geometric parameters and the NT

open-lattice structure characterize the "effective"

geometries of NTs that are marked by dotted lines in

Fig. 2.

Applicability criteria for continuum models

At the nanometer scale, the applicability of

continuum models to NT behavior can be qualitatively

evaluated by examining the validity of continuum-

based assumptions and identifying model restrictions

related to geometric parameters of NT structure and its
deformation. Before a continuum model is used, three

basic criteria have to be satisfied. First, a

homogenization criterion, such as LJa > 10, for

property averaging should be established. This

criterion provides a measure of relevance of the local

lattice to the global NT structure. Second, linearity of

elastic strains should be enforced, i.e., the axial strain,

c, must be small compared to unity. For NT shells, this

range of small strains is 2-5°/_ [3, 6]. The strain value

under bending or compressive loading can be bounded

by the maximum-strain criterion:

e, = (L,_>- Lv_)/L_I,. << I, i I )

where Lm_, and L_, are the original or underformcd

length of a NT and the deformed length, respectively.

Moreover, all strains should smaller than the lowest

estimate of the NT thickness. The third basic criterion

is that geometrically linear models are restricted to

small deflections of long NT structures.

Classification of nanotubes and key parameters

Separation of NTs into different classes is, to a

large extent, a necessary step in developing appropriate
models for various molecular structures. This

classification is usually done by first identifying the key

parameters that relate the local structural features to the

global response. These geometric parameters may bc

used to capture the influence of NT structure on the

degree of applicability of continuum shell models and

the associated ranges of validity. After the key

geometric parameters of NT structure are established,

dimensional analysis is used to identify a few non-

dimensional parameter-groups that fully characterize

the dominant mechanical properties of the different

classes of NTs.

Following classical shell theory {15, 161, the NT

thickness-to-radius ratio restriction h_/R,_ < 1t20 can

be used to loosely determine if a NT shell is thin and

thus whether transverse shear can be neglected in the

continuum shell model. Consideration of the length-to-

radius restriction L_/R m >> I will further define high

aspect ratio NTs that have unique deformation modes.

These restrictions can be used to group NTs into four

classes; that is thin NT shells (class Ia), thick NT shells

(class Ib), long NTs or high aspect ratio NTs (class II),

and thin beam-like NTs or NT beams (class III) such

that the normalized radius is RJa _1, where a is the

side length of a carbon ring or cell (Fig. 1). This

classification of NTs separates NT structures into
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groups that have similar global structural behavior,

overall material properties and deformation modes.

The NT shell classes include the thick shells (class

Ibl defined by the ratio h_,/R,_ > 1/20, as the NT radius

decreases to R,_/a_ -_ 2. As soon as NT length, L,_,

becomes large so that the length-to-radius ratio L v/R_ _

is well above 10, NTs acquire a high aspect ratio (class

II) and the associated structural properties (e.g., low

bending stiffness), but still behave like shells. Here, the
value 10 is used to show at least an order of magnitude

difference in the separation of the transverse and

longitudinal dimensions or scales in NT structures.

Such separation is based on inequalities and, thus, is not

precise, of course. Note that the NT beams (class III)

often also have high aspect ratios. The unique feature

of NT beams is that the high curvature and the van der

Waals forces inside of a NT become significant as far

as structural properties and deformation are concerned

[8, 9]. As a result, the effective NT thickness is higher

for NT beams. This increase in the effective NT

thickness increases the value of the ratio, h,/R,j, for

shells or the ratio, h Jl_, for the carbon lattice. The
thin-shell models, which are based on classical shell

theories [15, 16], are applicable only to two of the NT

classes (i.e., class la and class II) with certain

restrictions on NT size and the magnitude of its strains.

The name of each NT class is a reflection of the

structural properties of NTs. That is, NT shells (class Ia

and Ib) behave like either thin shells or thick shells {i.e.,

hollow cylinders). The hmg NTs of class It have a

structural response that is similar to hollow columns

regardless of the values of the NT radius. The NT

beams deform like either hmg beams or short beams

(i.e., solid cylinders). The name of each NT class also

indicates which models may be applicable 1o

characterize the NT global behavior. Variations in the

loading conditions may introduce only minor

refinements into applicability of these models.

hn-r/Rnt << I

Class la/Ib

I I

F [i
I I

Class 111

LN1

Figure 2. Schematics of the "effective" NT geometries (dotted lines) for the four classes of NTs: thin and thick NT

shells, long NTs or high aspect ratio NTs, and NT beams.

Effects of nanotube structure on deformation

The categorizing of NTs into different classes

indicates that NT structure may have significant

influence on their mechanical response (i.e., their

deformation modes for the shell-like and beam-like

geometries). The mechanical problems associated with
the deformation of NT-based sensors and scanning

probes [11, 12] also require selection of appropriate

models for various NT geometries. For NT probes, a

typical device involves a NT attached to a sharp tip of a

cantilever beam, which is brought into close proximity

or contact with the material tested and subjected to

compression or bending. Here, deformation of NT
shells is examined to illustrate the effect of NT

structural parameters on their global response under

compressive loadings.

Beam-like buckling modes of NTs subjected to

axial compression depend on their geometry.

Variations in the geometric characteristics of NT
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structure may also require examination of the shell-like

buckling modes. This section shows how the

applicability criteria for continuum models and the NT

classes affect the analysis of NT buckling. This

analysis is carried out for the three NT classes: Ia, Ib

and II. Dimensional analysis of the shell buckling

process was conducted, like that in Refs. [8, 91. The

analysis clearly identified the key geometric parameters

that significantly affect the NT buckling behavior, i.e.,

the thickness-to-radius ratio, h,..,/R,._, and the aspect

ratio, Lx/R_,p The tk)llowing sections examine the

effects of NT thickness, h., v and NT length, Lvp on NT

buckling predictions.

Effects of thickness estimates on buckling

For NT shells in class I, a linear analysis of shell

buckling can be carried out with a modification of the
classical formula [3, 13] for continuum shells.

However, the range of NT structural parameters should

be properly limited before such a model is used. First,

according to the proposed homogenization criteria

(L,.Ja > 10), the range of values for NT length should

be limited from below by the minimum length, L °.

]'his criterion ensures unique averaging of NT material

properties. Second, the range of values for NT radius

depends on the choice of thin or thick NT shells. That

is, the buckling strain of the thin NT shells can be

approximated by the following modified formula

,/h+/ (2)

onh' when the inequality h._./Rv_ < 1/20 is satisfied and

NTs have moderate aspect ratios. Here, v is Poisson's

ratio. The original buckling formula [15] is not based

on the non-dimensional quantity, hs,/R_. It also

includes the moment of inertia, Im. The later parameter

was shown to be a dependent quantity in the

dimensional analysis [8, 9]. At the nanometer scale, the

mechanical strains are easier to define than the stresses,

as indicated by the Eq. (2). In contrast to stresses, the

global NT strains can be measured directly. The

approximate nature of this equation is not only because

of the assumption of [inearity, but also because of the

known sensitivity of shell buckling to small variations

in thickness, cylindrical geometry and other nonlinear

geometric effects [15, 16]. A formula similar to Eq. (2)
without a non-dimensional ratio has been used in MD

simulations but without any restrictions or analysis [3].

The buckling predictions of Eq. (2) strongly

depend on the NT thickness estimates, which have been

bounded between the MD prediction of 0.066 nm [3]

(that is based on a shell analogy) and the value of

graphite interlayer spacing, t, of about 0.34 nm. The

magnitude of interlayer spacing is affected by the van

der Waals forces and applied pressure [I]. An

intermediate estimate of 0.072 nm is based on a bond-

thickness estimate [8], while an equivalent-truss model

llO] for the planar carbon lauice-shects yields an
estimate of 0.28 nm. The effect of such _,al-ialions in

thickness estimates on- the buckling behavior {}f NT

shells is illustrated in Fig. 3. Note that the criterion for

the maximum strains (2-5%} imposes an upper bound

or a cut-off boundary for the curves in Fig. 3 that

represent different estimates of NT thickness and span a

range of values of the NT radius.

0'251'- :, h.,i =0.34 nm

0+f
ll.2

_1 !!'""'
S 0.175

<3 0.15

1-[ ",, hvr = 0.28 nm

00+fr/_ Ii ,,,,,

=_ 0.1

"_, h_T = 0.072 nm

i :¢j
°0.05 hvr = 0.066 sun

0.025

0
0 2 4 6 8 10

Radius, RST

Figure 3. Dependence of the critical buckling strain of

carbon NTs on their radius, R_ (nm), for various
estimates of the effective NT thickness, h_,p.

Equation (2) provides a structz_re-propertv

relationship that connects the critical buckling strain lo

the structural characteristics of NTs (i.e.. h,, and R,,I,

for the aspect ratio, L.,/R+p that is not large. Note thal

Eq. (2) involves only one non-dimensional geomctric

quantity, hu/Rur, which is identified as a ke_ paramctcr

that controls the NT buckling behavior. Poisson'_, ratio

is a material constant for the class of NT shells.

Therefore, NTs having the same value of thc non-

dimensional ratio h JRur must have identical critical

strain and buckling modes even if the individual

parameters (i.e., hNj and R._7) are different. The last

statement constitutes a mechanical law of geometric

similitude for the class Ia of NT shells that have no

imperfections. It is analogous to the laws of similitude
in continuum mechanics. Note that in classical

mechanics, similitude is usually based on the analysis

of differential equations as opposed to a parameter-

group analysis.
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High aspect-ratio effects on buckling

The length of nanotubes affects their buckling
strain and the associated deformation modes. For the

class II of NTs with high aspect ratio, L.JRm, the

critical axial strain, g, is proportional to the NT end-

displacement and depends on the NT half-perimeter,

a'R_v, normalized by the NT length, Lye:

1(Tv R_.7 ] z AL,

c<, = 2(_) = L,,,
(3)

ifLu/Ru_ > 10, or better yet, if LJdN_ > 10, where dm is

the diameter of a NT. Here, AL is the critical end-

displacement, AL = L_I_' - Lvr. The difference in the

two last inequalities points out that there exists a range

of transitional values where Eq. (3) has marginal

applicability. In some cases, a weighting factor may be

also used to address specific structural properties. The

factor "1/2" in Eq. (3) depends on the end conditions

[15]. Here, the NT ends are simply supported. For the

fixed ends. the critical strain is 4 times larger. Also, the

moment of inertia, 1 = foR'h, the area, A = 2nRh,

Young's modulus and the mechanical stress are not

explicitly used in Eq. (3), in contrast to the equation in

Ref. [15]. Molecular dynamics (MD)simulations have

confirmed a similar relation for a particular case of NT

geometry [3l.

Under compression, long NTs (class II) have the

global deformation mode similar to that of nanometer-

scale beams (class Ill, [8, 91), because of their column-

like structural properties associated with the high aspect

ratios. However, the wall thickness effects reduce the

critical strain by a half (see factor "1/2" in Eq. (3)). An

initial bending would further decrease the value of the

critical strain. The long NT shells are not as sensitive

to imperfections in the wall thickness as the NT shells
in class la. However, the aforementioned ambiguities

in the values of NT lengths and radii at the nanometer

scale may also introduce some variations into the

buckling predictions.

Eq. (3) also provides a structure-property

relationship that connects the critical buckling strain or

the critical end-displacement to the structure of long

NTs, for which the aspect ratio is such that LJd,_ r > 10.

Note that Eq. (3) also involves one non-dimensional

quantity, RNr/Lm, which is a key non-dimensional

parameter that affects the buckling behavior of NT

shells. As a result, NTs having the same values of

nondimensional ratio RJLxl must have identical critical

strain and buckling modes, even if the individual

parameters RN7 and L_,_ are different. As mentioned

before, this statement is also a mechanical law of

geometric similitude for long NTs of the class II [8, 9],
and is an extension of the laws of similitude from

continuum mechanics. The buckling deformation of

NTs described by Eq. (3) is identical to the buckling

behavior of long NT beams.

Bending of nanotube shells

Bending is one of the dominant deformation modes

of NT-based scanning probes. The effective bending

modulus, Eve of a thick NT shell can be estimated by a

formula [15]:

(4)

where E c is the effective Young's modulus of the

carbon lattice [10]. Bending of thin shell-like structures

is sensitive to the local curvature and other geometric

parameters. For a thin cylindrical shell under bending

loads, one side is compressed before buckling occurs at

the local critical curvature, <. Then the local strain, _.

= K_ R_.,, can be estimated by the Eq. (2) (f the

inequality h JR_._ < 1/20 is satisfied. As a result, the

critical curvature, <,, is such that /¢ ,x (R,.,):. This

estimate is the same as that obtained by the MD

simulation [3]. However, the key non-dimensional

parameter, h,./R,. 7, is confirmed by the dimensional

analysis, so the relation _-, zc (h,/R,_): is more

appropriate.

The approximate nature of continuum-based

models is more evident in the analysis of buckling of

NT shells caused by ambient pressure. The lateral

pressure on a NT exerted by the surrounding molecules

of a polymer or other matrix is likely to be non-uniform

and discrete in nature. A shell-based model yields an

estimate for the critical lateral pressure [15]: P :_

(hJR,_) 3. Note that the bending stiffness of shells is

proportional to (h,_)'. Applicability of this

approximation is restricted by both the thin-shell

assumption, hu/Ru_ < 1/20, and the concept of

"pressure" that requires large lateral area (or large R,,).

However, the robustness of this estimate is underscored

by the fact that the same dependence is predicted for

buckling caused by a discrete lateral force [15]. Notice

that the expressions presented here depend only on the

key nondimensional parameter, h_JR_, which is

indicative of a shell approximation.

Limitations of continuum shell models

Equivalent-continuum models may, be very useful

for determining the global response and effective

properties of nanotubes, at least for a limited range of

geometric parameters. However, it is essential to

examine their ranges of validity and how the

macroscopic assumptions are applied at the nanometer

scale.
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Limitations of continuum shell representation

In applying continuum shell theories to NTs, many
of the same considerations that were examined for

reticulated lattice structures must be addressed [1 I, 12].

Similar to other open lattice structures, NTs are

characterized by the effective thickness. Even for the

most basic continuum shell theory, the bending stiffness

is proportional to the cube of the wall thickness. Thus,

adequate representation of NT wall thickness is

essential to the success of an equivalent-continuum

model.

Another issue that must be considered for NTs is

the contribution of the geometry of the periodic

hexagonal cell to the definition of the equivalent-

continuum stiffnesses. For example, studies on the

homogenization of plate-like lattices made of beam-

based cells indicate that equivalent stiffnesses are

highly dependent on the cell geometry [10-12]. In

addition, the cell geometry is typically manifested in

the equivalent-continuum model as membrane and

flexural orthotropies. As the n-fold symmetry

(geometry and material composition) of a cell increases,

the corresponding stiffnesses approach those for an

isotropic material.

Load introduction is another important

consideration in continuum modeling of NTs.

Specifically, improper load introduction may precipitate

local deformation that propagate through the NT,

rendering equivalent-continuum models meaningless.

Limitations of classical shell theory

To examine possible length-scale limitations of

macroscopic shell theories, all underlying continuum-

based assumptions must be scrutinized. For

convenience, these assumptions as applied to NTs are
listed here:

S 1) the equivalent shell for a NT molecule deforms

elastically,

$2) the length, L,.j, and the width or the half-

perimeter, a-R_¢, are much larger than the shell

thickness, h,._, so that a two-dimensional theory

sufficiently captures the dominant response,

$3) the direction of the applied load remains

constant during deformation (this essentially guaranties

a conservative buckling problem),

$4) the radius, R_, and the cross-section of the NT

shell does not vary along the length,

$5) elastic strains and rotations of the shell are small

compared to unity, or the gradients of displacements are

infinitesimal,

$6) material line elements that are straight and

perpendicular to the shell reference surface remain that

way during deformation and are inextensible (i.e.,

Kirchhofl's hypothesis).

$7) displacements are small compared to the shell

thickness, huc,

$8) through-the-thickness normal stresses are

negligible compared to other elastic stresses.

In classical continuum shell theory, all these

assumptions are to be satisfied. In the context of NT

mechanics, the range of validity of these different

assumptions may be defined by using the geometric

parameters of the NT molecular structure. This

approach provides a link between the structure of

carbon NTs, their mechanical behavior, and the shell

model for the NTs.

In this study, the analysis is restricted to elastic

behavior of the NT shells (assumption (S l)). Note that

the bifurcation-buckling equations are linear 115]. The

shell buckling theory that they come from is nonlinear

[16], because the process of buckling is a nonlinear

phenomenon. Assumption ($2) allows the use of two-

dimensional theory for capturing the dominant global

response features and in deriving the elastic shell

equations. It is satisfied if the NT radius is such that

h_/R_j < 1/20. Assumption ($3t restricts the direction

of displacement of carbon atoms located near the NT

edges. Requirement ($4) about the constant radius and
cross-sectional area leads to the constant moment of

inertia. Furthermore, assumptions ($3) and ($4) are not

just shell assumptions, as they are used in the classical

beam theory as well [8, 91.

Assumption ($5) implies that the shell cross-

sections do not deform in their planes, instead, they

remain perpendicular to the original image of the shell

reference surface during axial deformation as required

by assumption ($6). KirchholT's hypothesis ($6) can

be linked to the elastic constitutive relation. To restrict

stresses according to assumption ($8) is problematic for
NTs of small radii. These stresses are noticeable for the

NT diameters in the range d,._ < 1 nm [4], howeve,,

their magnitude diminishes as the diameters of NTs

increase. These curvature-generated internal stresses

set a lower limit on NT radius as far as the applicabilit.',

of the thin-shell model is concerned.

Limitations of Donnell' s equations

Selection of a set of shell buckling equations must

be made with care, after an acceptable loading

procedure has been developed. Donnell's shell

equations have been used for NT buckling [71.

however, it should be pointed out that these equations

are more applicable to calculating linear-bifurcation

points for cylinders that have more than two

circumferential waves in the buckling pattern. Thus,

Donnell's equations [16] do not predict the column-like

buckling mode and would lead to errors if used for the

analysis of long NTs. For instance, the limiting

equation, Eq. (3), for critical strains cannot be achieved.

To get the global column-buckling mode for hmg
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cylinders, a set of equations such as Flugge's equations

must be used [16].

For both sets of bifurcation-buckling equations, it

is important to note that the bifurcation (buckling)

modes that are predicted are not the deformation mode

exhibited by the buckled shell alter the transient

dynamic response of buckling has attenuated. The

mode that is observed is the stable postbuckling mode.

The bifurcation mode is unstable and is one of the

configurations that the shell passes through on its way

to the stable postbuckling configuration. This behavior

is signified by the unstable nature of the bifurcation

point. Thus, one must be cautious about drawing

conclusions about the behavior of nanotubes from

bifurcation buckling modes.

Nanotube buckling and characterization

The shell-like buckling of a NT has been used as a

means for determining properties such as the axial
stiffness or the effective elastic modulus of a nanotube

[31. Several considerations must be taken into account

when using this technique in order to aw)id significant

errors in the calculated results. First, buckling loads of

circular cylindrical shells are known to be highly

sensitive to imperfections, such as initial geometric

imperfections in the form of wall undulations, for some

loading conditions. A detailed account of the effects of

various imperfections on the buckling of compression

loaded cylindrical shells is found in Ref. [18].

For uniform-compression-loaded cylinders, this

sensitivity is manifested by unstable, symmetric

bifurcation behavior with a multiplicity of eigenvalues

that have the same numerical value. The multiplicity of

eigenvalues corresponds to the presence of several

unstable equilibrium branches that intersect the

equilibrium path of the unbuckled shell. Moreover, the

multiplicity of eigenvalues is an artifice of the high

degree of axial symmetry exhibited by additional

factors such as: 1 ) the geometry of the perfect shell, 2)

the material composition, and 3) the loading and

support ccmditions. The common intersection of the

multiple unstable postbuckling equilibrium paths is

manifested physically for a geometrically imperfect

shell by the presence of a limit point of the equilibrium

path with a magnitude that is usually much smaller than

the magnitude of the corresponding bifurcation point.

Differences between buckling loads obtained from

bifurcation analyses for geometrically perfect shells and

from nonlinear analyses of imperfect shells, which

agree well with experiments, are known to be as large

as 60%. Thus, mechanical properties that are based on

calculated bifurcation buckling loads may be

substantially in error.

Second, for other loading conditions such as

torsion, the imperfection sensitivity of a circular

cylinder may be much less severe than that exhibited by

the corresponding compression-loaded shell. This

reduced sensitivity results from the fact that for torsion

loading, the shell experiences zones of diagonal tension

incipient to buckling and is not dominated by

compressive stresses. For a loading such as pure

bending, a reduction in imperfection sensitivity occurs

because of the absence of axial symmetry and the fact

that the shell is again not dominated by compressive

stresses. This lack of symmetry is typically manifested

mathematically by distinct bifurcation points or

eigenvalues (no multiple path intersections). However,

modal interactions that lead to imperfection sensitivity

may occur for cases in which the distinct eigenvalues

are nearly equal. Altogether, these obser\ations

suggest that nanotube loading conditions that are not

compression dominated may yield better measures of

mechanical properties.

A role of the structural-response scale

Guidelines for the range of validity of a given

continuum model must be also established with respect

to the characteristics of the global mechanical response.

To define the range of validity of shell theories, for

isotropic-material bodies, the parameter h l is used [ 17],

where h is the nominal or maximum shell thickness and

l is the characteristic dimension of the expected shell

response. For example, l could be the wavelength of a

buckling or vibration mode. It may also be taken as the

minimum radius of curvature of the two-dimensional

shell surface, which implies a relativeb large

wavelength response. As a result, the role of the ratio

h//is similar but not identical to that of the thickness-to-

radius ratio. Consequently, a rough guideline for

defining the applicability of classical thin-shell theory

to structural-response problems is that h/I must be less

than or equal to 1/20. Naturally', this is similar to the

requirement on the thickness-to-radius ratio. As one

might expect, for high-frequency buckling or vibration

modes, classical thin-shell theory may be inadequate.

As one might also expect, the need to analyze

relatively thick isotropic and thin anisotropic shells

arises in engineering applications. For many of these

cases, the guideline h/l <_ 1/20 generally doesn't apply

and a more robust measure is needed to gage the

applicability of thin-shell theory. Even for thin

anisotropic shells, a measure such as (hl)M < 1/20 is

needed, where M is a material-system weighting factor

that accounts for how the relative stiffnesses of the

material system affect the range of validity' of thin-shell

theory. For all cases, when a measure like (h l_._1 gets

relatively large, a refined shell theory is very likeb

needed to get accurate predictions of the structural

response. This requirement for a refined theory' can

become even more important when the response desired

is a localized quantity like a stress or strain, as

8

American Institute of Aeronautics and Astronautics



compared to a global quantity like a buckling load or a

fundamental vibration frequency.

Other important shell parameters

Classical thin-shell theory suggests that there is

another important parameter, which is useful for

classifying the global mechanical behavior of NTs,

besides the length-to-radius ratio LNT,/RN1, and the

thickness-to-radius ratio, h._.:.Rv> That is, the BatdorfZ

parameter: Z- L 2 (Rh), or Z - (L/R)=(R/h) [19]. This

parameter is proportional to the product of the

albrementioned key non-dimensional parameters. The

derivation of the Batdorf Z parameter is based on a

dimensional analysis of Donnell's simplified equations

[16] for buckling of thin-walled circular cylindrical

shells. This parameter can be also used to characterize

the influence of geometry on global buckling behavior

of compression-loaded circular cylindrical shells.

A model applicability map

The aforementioned analysis can be used to

construct an applicability map for thin-shell models for

the classes la and II of carbon NTs (Fig. 3). These

classes of NTs are defined by dimensional restrictions

on NT geometric parameters, which are formulated

with inequalities that allow one to consider wide ranges

of numerical values for the NT parameters. Ranges of

values for the inverse of aspect ratio, L_,/d,,. and the

normalized radius, RN/a, are marked for each class of

NTs. The /.,-line is based on the homogenization

criteria Lu/a > 10. The model applicability map shown

in Fig. 4 provides guidance for MD simulations and

experiments, for possible size effects in the thin-shell

model that may be used for data reduction.

(_]111 fix

"... Lmi,,-line

Class la:I I Class II:

_'_'_ _/" long NTs thin NT shells NN_

10 \ Class |b:

\ Class 1II thick NT shells

Zis 1 ___ NT hea_s

I I I ',

0 1/10 I/5 1/2 1

r

Inverse of the Aspect Ratio, dNT/LNT

Figure 4. A model applicability map (MAM) with the ranges of values for non-dimensional geometric parameters

that define NT classes and indicate the limits in the applicability of the thin-shell model for NTs.

The descriptive name of each NT class indicates

the structural properties of NTs as well as the potential

continuum models that can be used to predict their

global mechanical behavior. That is, NT shells behave

like either thin shells or thick shells depending on the

thickness-to-radius ratio, h_/R m. The long NTs (class

If) have structural behavior that is similar to the

behavior of columns. The NT beams deform like

macroscopic beams. As a result, the map in Fig. 4 can

be used to help find out what basic models are

appropriate to describe the overall mechanical behavior

of NTs in a particular class. The applicability map (Fig.

4) also indicates that simple shell models may be

ineffective for the parameters along the limiting lines

on this map. For example, micropolar effects [12] may

be significant along the /.,,,o-line where higher-order

theories may be required.

Summary and discussion

The structure-propert3' relationships that relate the

critical strains to NT structure have been examined and
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Ikmr broad classes of carbon NTs have been identified.

These classes include thin and thick NT shells, high

aspect ratio NTs, and NT beams. The importance of

classifying the types of NT structures has become

apparent when the shell-like buckling of NTs was

investigated. In each class, NTs have unique buckling

behavior. The scaling analysis is used to identify the

key parameters that control the buckling behavior of

each class of NTs. It has been shown that NTs having

the same values of non-dimensional ratios (hN/R,v _ for

NT shells and L_./R_,_ for long NTs) must have identical

critical strain and buckling modes even if the individual

parameters are different. This constitutes the scaling

laws of geometric similitude.

Nano-scale effects and other key conclusions are

summarized here as follows:

1) there are variations in the estimates of the effective

thickness of carbon nanotubes;

2) the nanotube radius is uniquely defined only when

the reference shell-surface is used;

3) the value of nanotube length is subject to the end-

cap-effects;

4) the axial strain of a nanotube is easier to define than

its stresses;

5) displacements on the ends of NTs are easier to

nnplement than tractions as boundary conditions;

6) the hyperelastic behavior of a nanotube extends the

typical 2% limit for the elastic strain of solids;

7_ carbon nanotubes of small radii behave as beams;

8) a homogenization criterion (L_,/aj > 10) is required;

9) the moment of inertia is a dependent parameter in the

buckling formulae for nanotubes;

A model applicability map for the four classes of

NTs is constructed to link NT behavior to specific

equivalent-continuum models that can be used for data

reduction and NT probe designs. The approximate

nature of the analysis may provide potential sources of
errors in the characterization of NT behavior and

mechanical properties. For instance, the bending

stiffness of shells is highly sensitive to the thickness,

h,;, and its variations. Its value is proportional to (h_) _.

As a result, the compression-loaded cylindrical

structures are very sensitive to small deviations in their

wall-thickness (they can be less than one wall-

thickness) and global properties that are calculated by

using buckling loads could be in error of as much as

6()°/_.

Concluding remarks

Issues that should be addressed when using an

equivalent-continuum model to represent the global
mechanical behavior of a carbon nanotube have been

examined in the present study, in detail. In addition,

applicability criteria have been discussed, fundamental

parameters have been identified, and a means for

classifying nanotubes has been presented. Moreover,
four broad classes of carbon nanotubes have been

identified that include thin and thick shell-like

structures of moderate aspect ratio, high-aspect-ratio
shelflike structures, and beam-like structures.

Additionally, a parametric map that links the four

classes of nanotubes with the specific types of

continuum models has been presented.

The buckling behavior of carbon nanotubes has

also been a primary focus of the present study.

Structure-property relationships that relate the critical
strains to the nanotube structure have been established

that apply to the three broad classes of carbon

nanotubes defined herein. For each nanotube class, a

unique buckling behavior has been identified and a

scaling analysis was used to identify the fundamental

non-dimensional parameters that control the buckling
behavior for each nanotube class. Moreover, the

corresponding scaling laws of geometric similitude
have been described. For nanotubes with the same

values of the non-dimensional parameters, it has been

shown that they must have identical critical strain and

buckling modes, even if the individual structural

features are different. As a result, the analysis

presented herein may help to reduce the number of

molecular dynamics simulations that are needed t_+

describe a whole class of NTs.
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